Abstract

Irradiation-induced segregation mechanisms are classified into solute–point-defect complex type and inverse Kirkendall type. For solutes that have a strong interaction with interstitials in a dilute alloy, the complex effect plays an important part in the segregation. Our earlier model describing solute grain boundary segregation during neutron irradiation in dilute binary alloys, based on the complex effect mechanism, is modified by considering the irradiation-enhanced solute diffusion and the long-range recombination effect of freely migrating point-defects, and expanded to evaluate solute segregation in dilute ternary alloys through consideration of solute–solute competition for segregation sites. Applications of the model to predictions of P grain boundary segregation in neutron irradiated α-Fe and Fe–B–P and Fe–C–P alloys indicate that the model has reasonable validity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.