Abstract

Electrochemical scanning tunneling microscopy (ECSTM) was applied to analyze in situ the passivation of grain boundaries on microcrystalline copper in 0.1 M NaOH aqueous solution. Two types of boundaries, assigned to coherent twin and random grain boundaries, were studied in three different states of the copper surface: metallic after cathodic reduction of the air-formed native oxide film, passive after anodic polarization at 0.7 V vs. SHE to form the duplex Cu(I)/Cu(II) oxide film, and metallic after cathodic reduction of the passive film. The depth measured at several sites along the grain boundaries was extracted from statistical line profile analysis and discussed using an original model allowing differentiating metal consumption by dissolution or by passive film formation at grains and grain boundaries. The results highlight different local passivation properties between randomly oriented grains and grain boundaries and also between the two different types of grain boundaries. Both at coherent twin and random grain boundaries, it is found that more copper irreversibly dissolves during passivation and less copper is consumed to grow the passive film, suggesting a more hydroxylated/hydrated composition less dense in copper than on grains. At random grain boundaries, irreversible dissolution is found to be enhanced and the passive film to be thicker.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.