Abstract

The solid-state reaction in Pt(15 nm)/Fe(15 nm) and Pt(15 nm)/Ag(10 nm)/Fe(15 nm) thin films after post-annealing at 593 K and 613 K for different annealing times has been studied. The structural properties of these samples were investigated by various methods including depth profiling with secondary neutral mass spectrometry, transmission electron microscopy, and X-ray diffraction. It is shown that after annealing at the above temperatures where the bulk diffusion processes are still frozen, homogeneous reaction layers of FePt and FePt with about 10 at.% Ag, respectively, have been formed. Corresponding depth profiles of the element concentrations revealed strong evidence that the formation mechanism is based on a grain boundary diffusion induced solid-state reaction in which the reaction interfaces sweep perpendicularly to the original grain boundary. Interestingly, X-ray diffraction indicated that in both thin-film systems after the solid-state reaction the ordered L10 FePt phase, which is the requested phase for future magnetic data storage applications, is also present.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.