Abstract
Ag grain boundary (GB) diffusion was measured in the Cu-0.2at%Ag alloy in a wide temperature range from 473 to 970 K. The direct measurements of Ag GB diffusivity D alloy gb under conditions of the Harrison C regime revealed that D alloy gb is almost identical to D pure gb determined earlier for Ag diffusion in high-purity Cu (Divinski, Lohmann, and Herzig, 2001). The penetration profiles determined in the Harrison B regime showed a complex, multi-stage shape. This diffusion behavior can be rationalized assuming that besides GBs significantly covered by segregated Ag atoms, some fraction of GBs remains almost free from Ag atoms in the studied temperature interval. The total amount of “pure” GBs drastically decreases with decreasing temperature. This hypothesis was proven by measurements of Ag GB diffusion in Cu near Σ5 bicrystals, which allowed us to analyze in detail the non-linear segregation of Ag in Cu GBs.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have