Abstract

Chiral metal-organic frameworks (cMOFs) are emerging chiral stationary phases for enantioseparation owing to their porosity and designability. However, a great number of cMOF materials show poor separation performance for chiral drugs in high-performance liquid chromatography (HPLC). The possible reasons might be the irregular shapes of MOFs and the low grafting degree of chiral ligands. Herein, MIL-101-Ppa@SiO2 was synthesized by a simple coordination post-synthetic modification method using (S)-(+)-2-Phenylpropionic acid and applied as the chiral stationary phase to separate chiral compounds by HPLC. NH2-MIL-101-Ppa@SiO2 prepared via covalent post-synthetic modification was used for comparison. The results showed that the chiral ligand density of MIL-101-Ppa@SiO2 was higher than that of NH2-MIL-101-Ppa@SiO2, and the MIL-101-Ppa@SiO2 column exhibited better chiral separation performance and structural stability. The binding affinities between MIL-101-Ppa@SiO2 and chiral compounds were simulated to prove the mechanism of the molecular interactions during HPLC. These results revealed that cMOFs prepared by coordination post-synthetic modification could increase the grafting degree and enhance the separation performance. This method can provide ideas for the synthesis of cMOFs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call