Abstract

ABSTRACTA series of poly(acrylic acid-co-methylvinylketone–graft–sulfamethoxazole)(AVMDS) species was synthesized for drug carrier applications. The synthesis involved two steps: copolymerization of acrylic acid(AA) with methyl vinyl ketone(MVK) through the free radical route and subsequent grafting of the sulfamethoxazole (SMX) onto the copolymer via the Schiff base reaction of the primary amine of SMX with the carbonyl groups of the MVK units. The structures and properties of the materials were characterized by nuclear magnetic resonance(NMR), X-ray diffraction(XRD), differential scanning calorimetry(DSC), and scanning electronic microscopy (SEM). An in-vitro cytotoxicity test of the drug-carrier systems via MTT assay revealed no significant cytotoxic effect at concentrations up to 100 µg · ml−1. The dynamic release of SMX from these systems through a retro-imidation reaction (inverse Schiff base reaction) was investigated in depth, where the diffusion through the polymer matrix, the enhancement of the water solubility of SMX, the influence of the initial drug concentration, the pH of the medium, and the effect of the degree of swelling of the polymer matrix on the release dynamics were evaluated. The AVMGS4 and AVMGS1 drug carrier systems containing 3.58 and 1.18 wt% of SMX were the best performing systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call