Abstract

Grafting-from has proven to be a very effective way to create high grafting densities and well-controlled polymer chains on different kinds of surfaces. In this work, we aim to graft zwitterionic brush from cellulose membrane (CM) via ARGET-ATRP (Activator Regenerated by Electron Transfer ATRP) method indirectly for blood compatibility improvement. Characterization of the CM substrates before and after modification was carried out by attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), water contact angle measurements, X-ray photoelectron spectroscopy analysis, and atomic force microscopy, respectively. The results demonstrated zwitterionic brushes were successfully grafted on the CM surfaces, and the content of the grafted layer increased gradually with the polymerization time. The platelet adhesion, hemolytic test and plasma protein adsorption results indicated the cellulose membrane had significantly excellent blood compatibility featured on lower platelet adhesion and protein adsorption without causing hemolysis. The functionalized cellulose substrate could have a great potential usage for biomedical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.