Abstract

Tethering of biomimetic phosphorylcholine derivative onto the surface of biomedical devices is an effective method for improving hemocompatibility and antibiofouling property. Herein, series of novel hydroxyl-capped phosphorylcholines (HOPC) with different carbon spacer lengths were first synthesized and characterized with element analysis (EA), Fourier transform infrared spectroscopy(FTIR), and nuclear magnetic resonance spectroscopy (NMR). Then, HOPC (n=5, 2a) was one-pot tethered onto cellulose membrane with hexamethylene diisocyanate (HDI) as a coupling agent. The existence of phosphorylcholine was demonstrated by water contact angle measurement, attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). The hemocompatibility and antibiofouling property were evaluated by hemolytic test, platelet adhesion, protein adsorption, and Escherichia coli adhesion test. The results showed that cellulose membranes tethered with HOPC exhibited excellent hemocompatibility featured by low platelet adhesion and fibrinogen adsorption as well as antibiofouling property with bacterial adhesion resistance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call