Abstract

Fully bleached kraft pulp (BKP) and thermomechanical pulp (TMP) fibers were grafted with acrylamide via dielectric-barrier discharge treatment at various treatment dosages. The results indicate that increased dielectric-barrier discharge treatment leads to the increased polymerization and incorporation of acrylamide onto fiber surfaces. Greater incorporation of poly(acrylamide) occurs on the BKP fibers than the TMP at the same treatment conditions. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) and scanning electron microscopy (SEM) indicate that dielectric-barrier discharge initiated modifications to fiber surface topo-chemistry occur across the fiber such that the sheet is randomly peppered with modified areas; however, it occurs in patches on individual fibers as opposed to occurring as an evenly distributed thin film. SEM and elemental analysis also showed that the incorporation of acrylamide onto the fiber surface increases with increased treatment dosages.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.