Abstract

ABSTRACTAcetylation is one of the most interesting chemical treatments to improve the affinity of lignocellulosic fibers with polymeric matrices for the elaboration of several types of composites. In this paper, the acetylation of flax and wood pulp (bleached softwood Kraft pulp and thermomechanical pulp) fibers was carried out at room temperature in a solvent‐free system with acetic anhydride in the presence of sulfuric acid as catalyst. The effect of acetylation on the fine structure of fibers was investigated by spectroscopic methods, while the extent of acetylation was quantified by weight percent gain. The effect of reaction time on fiber morphology was studied at macro‐ and microscale using scanning electron microscopy, optical microscopy, and fiber quality analysis. The evolution of the hydrophobic/hydrophilic character of fibers was determined by contact angle measurements. The wettability of fibers by liquid epoxy resin was also evaluated to confirm the improvement of the affinity of acetylated fibers with the epoxy matrix. It was found that the hydrophilic character of fibers decrease with increasing reaction time, whereas the trend was less pronounced beyond specific reaction times. Acetylated fibers can therefore be potential candidates for replacing nonbiodegradable reinforcing materials in composite applications. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015, 132, 42247.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.