Abstract

The grafting of antimicrobial peptides onto mesoporous silica particles and their controlled release using a green light-responsive linker, which enables tunable release-concentration-time profiles, is presented. The mesoporous silica surface is functionalized with antimicrobial peptides employing sequential functionalization steps, including the grafting of 3-[(2-propynylcarbamate)propyl]triethoxysilane (PPTEOS) as anchor, boron-dipyrromethene (BODIPY) as photosensitive linker, and C14R peptides as antimicrobial agents. Characterization using scanning electron microscopy (SEM), transmission electron microscopy (TEM), attenuated total reflectance infrared (ATR-IR) spectroscopy, and thermogravimetric analysis (TGA) validate the successful fabrication and functionalization of mesoporous silica. The ester-1,2,3-triazole-BODIPY demonstrates high sensitivity to green light and enables C14R antimicrobial peptide release with adjusted concentration-time profiles. Under the applied conditions up to 64 μg mL-1 were released within 40 minutes. The antimicrobial activity of the released C14R on Escherichia coli. BL21(DE3) is demonstrated. Overall, the use of the photosensitive linker not only provides a promising avenue for controlling the release of biomolecules and therapeutics but also opens up opportunities for the development of materials for targeted release in wound dressings, for example.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call