Abstract

The enzyme subtilisin from Bacillus licheniformis (4.1 nm × 7.8 nm × 3.7 nm) was easily immobilized onto a mesoporous silica (MPS) surface by a direct one-step method and the amount of subtilisin immobilized on each functionalized MPS surface was similar (approximately 0.30 mg of enzyme/mg of MPS support). The catalytic performance (hydrolytic activity and enantioselectivity) of the immobilized subtilisin was found to depend on the properties of the organofunctional group on the MPS surface. In particular, the hydrolytic activity of enzyme immobilized on ethyl-group-modified MPS increased relative to the behavior of free subtilisin (relative activity 143%). The activity of subtilisin immobilized on the modified MPS was improved by facilitation of contact between enzyme and hydrophobic substrate by increase in hydrophobicity with an immobilized carrier. On the other hand, the enantioselectivity of subtilisin immobilized on 3-mercaptopropyl-group-modified MPS significantly decreased (enantioselectivity of 2.6 compared to 4.3 for free subtilisin). This decrease in enantioselectivity indicated that the mercapto group on the MPS surface was changed in the secondary structure of enzyme by interacting between enzyme and immobilized support. The denaturation temperature of subtilisin immobilized on no-substituted MPS increased (65 °C compared with 57 °C for free subtilisin). The denaturation temperature of immobilized subtilisin was dependent on the absorbed fraction of thermal energy by functional groups on the MPS surface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.