Abstract

Graft copolymers of poly(methyl methacrylate) and polyamide-6 (PMMA-g–PA6) were investigated via in situ anionic polymerization of e-caprolactam, using PMMA precursors with N-carbamated caprolactam pendants (PMMA–CCL) as macroactivators and sodium caprolactamate as catalyst. Three grades of PMMA–CCLs obtained by free radical copolymerization were used for synthesizing the PMMA-g–PA6 copolymers with different PMMA content. The resulting graft copolymer was characterized by Fourier-transform infrared spectroscopy and selective extraction. Scanning electron microscopy is used to clarify the phase morphology of obtained polymer by fracture surface. The thermal property, crystallinity and dimensional stability of graft copolymer were studied using differential scanning calorimetry, X-ray diffraction and water absorption measurement. The results show the Tg of graft copolymer is higher than that of neat PA6, but the onset and peak points of graft copolymer melting point are shifted to lower temperature. The percentage crystallinity and water absorption of PMMA-g–PA6 copolymer decrease with increasing PMMA content, but the crystal structure of PA6 is scarcely affected by the presence of PMMA. Graft copolymers have improved dimensional stabilities relative to neat PA6. Upon the incorporation of 19.9 wt% PMMA into PA6, the water absorption of PMMA-g–PA6 copolymer has been reduced from 4.8 for neat PA6 to 2.1%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call