Abstract

The “molecular sieving effect” of zeolites has enabled size-selective adsorption and catalysis. Although a large variety of zeolites have been developed thus far, it is still challenging to find zeolites that can separate molecules such as CO2, N2, CH4, and small organics that have kinetic diameters all closely located in the range of 0.3 to 0.4 nm. Here we demonstrate that controlled collapse or atomic disordering of NaA zeolite can systematically narrow the effective pore size below 0.4 nm and thus “tune” the molecular sieving effect. As the zeolite is gradually disordered, the adsorption amounts for all gas molecules decrease; however, larger molecules show a much faster decrease than that of the smaller ones. Consequently, the adsorption selectivities could be remarkably enhanced for various gas pairs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.