Abstract

Through a spin-coating technique, a high performance carbon molecular sieve (CMS) membranes were fabricated from thermally stable polymer polyphenylene oxide (PPO) and thermally labile polymer poly vinylpyrrolidone (PVP). The permeation results show that the small gas molecules (H 2, CO 2, N 2, and CH 4) transport mechanism is dominated by the molecular sieving effect. The permeation performances have a strong dependency upon polymer concentration and pyrolysis temperature. The best performance for hydrogen permeability obtained with PPO 15 PVP pyrolyzed at 700 °C was 1121 Barrer (1 Barrer = 1 × 10 −10 cm 3 (STP) cm/[cm 2 s cm Hg]) and the values of selectivity for gas pairs such as H 2/N 2 and H 2/CH 4 were 163.9 and 160.9, respectively. The correlation factor of permselectivity of H 2/N 2 and H 2/CH 4 gas pairs obtained from PPO and PPO/PVP derived CMS membranes were above the Robeson (2008) upper bound. The addition of thermally labile PVP creates diffusion pathways and controls selectivities for the CMS membranes derived from PPO 10 PVP and PPO 15 PVP.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.