Abstract

An accurate evaluation of the World Health Organization grade is critical in pediatric intracranial tumors. Our aim was to explore the correlations between parameters derived from conventional DWI, intravoxel incoherent motion, and diffusional kurtosis imaging with histopathologic features to evaluate the accuracy of diffusion parameters for grading of pediatric intracranial tumors. Fifty-four pediatric patients with histologically proved intracranial tumors who underwent conventional DWI, intravoxel incoherent motion, and diffusional kurtosis imaging were recruited. The conventional DWI (ADC), intravoxel incoherent motion (pure diffusion coefficient [D], pseudodiffusion coefficient [D*], perfusion fraction [f], diffusional kurtosis imaging [K], and diffusion coefficient [Dk]) parameters in the solid component of tumors were measured. The cellularity, Ki-67, and microvessel density were measured. These parameters were compared between the low- and high-grade pediatric intracranial tumors using the Mann-Whitney U test. Spearman correlations and receiver operating characteristic analysis were performed. The ADC, D, and Dk values were lower, whereas the K value was higher in high-grade pediatric intracranial tumors than in low-grade tumors (all, P < .001). The K value showed positive correlations (r = 0.674-0.802; all, P < .05), while ADC, D, and Dk showed negative correlations with cellularity and Ki-67 (r = -0.548 to -0.740; all, P < .05). The areas under the curve of ADCVOI, DVOI, DkVOI, and KVOI were 0.901, 0.894, 0.863, and 0.885, respectively, for differentiating high- from low-grade pediatric intracranial tumors. The area under the curve difference in grading pediatric intracranial tumors was not significant (all, P > .05). Intravoxel incoherent motion- and diffusional kurtosis imaging-derived parameters have similar performance compared with conventional DWI in predicting pediatric intracranial tumor grade. The diffusion metrics may potentially reflect tumor cellularity and Ki-67 in pediatric intracranial tumors.

Highlights

  • BACKGROUND AND PURPOSEAn accurate evaluation of the World Health Organization grade is critical in pediatric intracranial tumors

  • Intravoxel incoherent motion– and diffusional kurtosis imaging–derived parameters have similar performance compared with conventional DWI in predicting pediatric intracranial tumor grade

  • This study aimed to explore the correlations of metrics derived from conventional DWI, intravoxel incoherent motion (IVIM), and diffusional kurtosis imaging (DKI) with histopathologic features to compare the accuracy of conventional DWI, IVIM, and DKI for Pediatric intracranial tumors (PITs) grading

Read more

Summary

Objectives

Our aim was to explore the correlations between parameters derived from conventional DWI, intravoxel incoherent motion, and diffusional kurtosis imaging with histopathologic features to evaluate the accuracy of diffusion parameters for grading of pediatric intracranial tumors. This study aimed to explore the correlations of metrics derived from conventional DWI, IVIM, and DKI with histopathologic features to compare the accuracy of conventional DWI, IVIM, and DKI for PIT grading

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.