Abstract
In this paper, we propose a gradient-based local affine invariant feature extraction algorithm (G-LAIFE), using affine moment invariants for robot localization in real indoor environments. The proposed algorithm is an effective feature extraction algorithm that is invariant to image translation and to 3D rotation, and it is within a partial range of the image scale. Representative performance analysis confirms that the proposed G-LAIFE algorithm significantly enhances the recognition rate and is more efficient than the scale invariant feature transform (SIFT), especially in terms of 3D rotation change and computational time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.