Abstract

Aiming at the nonlinear radiometric differences between multi-source sensor images and coherent spot noise and other factors that lead to alignment difficulties, the registration method of gradient weakly sensitive multi-source sensor images is proposed, which does not need to extract the image gradient in the whole process and has rotational invariance. In the feature point detection stage, the maximum moment map is obtained by using the phase consistency transform to replace the gradient edge map for chunked Harris feature point detection, thus increasing the number of repeated feature points in the heterogeneous image. To have rotational invariance of the subsequent descriptors, a method to determine the main phase angle is proposed. The phase angle of the region near the feature point is counted, and the parabolic interpolation method is used to estimate the more accurate main phase angle under the determined interval. In the feature description stage, the Log-Gabor convolution sequence is used to construct the index map with the maximum phase amplitude, the heterogeneous image is converted to an isomorphic image, and the isomorphic image of the region around the feature point is rotated by using the main phase angle, which is in turn used to construct the feature vector with the feature point as the center by the quadratic interpolation method. In the feature matching stage, feature matching is performed by using the sum of squares of Euclidean distances as a similarity metric. Finally, after qualitative and quantitative experiments of six groups of five pairs of different multi-source sensor image alignment correct matching rates, root mean square errors, and the number of correctly matched points statistics, this algorithm is verified to have the advantage of robust accuracy compared with the current algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.