Abstract

BackgroundQuantitative Cardiovascular Magnetic Resonance (CMR) techniques have gained high interest in CMR research. Myocardial T2 mapping is thought to be helpful in diagnosis of acute myocardial conditions associated with myocardial edema. In this study we aimed to establish a technique for myocardial T2 mapping based on gradient-spin-echo (GraSE) imaging.MethodsThe local ethics committee approved this prospective study. Written informed consent was obtained from all subjects prior to CMR. A modified GraSE sequence allowing for myocardial T2 mapping in a single breath-hold per slice using ECG-triggered acquisition of a black blood multi-echo series was developed at 1.5 Tesla. Myocardial T2 relaxation time (T2-RT) was determined by maximum likelihood estimation from magnitude phased-array multi-echo data. Four GraSE sequence variants with varying number of acquired echoes and resolution were evaluated in-vitro and in 20 healthy volunteers. Inter-study reproducibility was assessed in a subset of five volunteers. The sequence with the best overall performance was further evaluated by assessment of intra- and inter-observer agreement in all volunteers, and then implemented into the clinical CMR protocol of five patients with acute myocardial injury (myocarditis, takotsubo cardiomyopathy and myocardial infarction).ResultsIn-vitro studies revealed the need for well defined sequence settings to obtain accurate T2-RT measurements with GraSE. An optimized 6-echo GraSE sequence yielded an excellent agreement with the gold standard Carr-Purcell-Meiboom-Gill sequence. Global myocardial T2 relaxation times in healthy volunteers was 52.2 ± 2.0 ms (mean ± standard deviation). Mean difference between repeated examinations (n = 5) was −0.02 ms with 95% limits of agreement (LoA) of [−4.7; 4.7] ms. Intra-reader and inter-reader agreement was excellent with mean differences of −0.1 ms, 95% LoA = [−1.3; 1.2] ms and 0.1 ms, 95% LoA = [−1.5; 1.6] ms, respectively (n = 20). In patients with acute myocardial injury global myocardial T2-RTs were prolonged (mean: 61.3 ± 6.7 ms).ConclusionUsing an optimized GraSE sequence CMR allows for robust, reliable, fast myocardial T2 mapping and quantitative tissue characterization. Clinically, the GraSE-based T2-mapping has the potential to complement qualitative CMR in patients with acute myocardial injuries.Electronic supplementary materialThe online version of this article (doi:10.1186/s12968-015-0127-z) contains supplementary material, which is available to authorized users.

Highlights

  • Quantitative Cardiovascular Magnetic Resonance (CMR) techniques have gained high interest in CMR research

  • This qualitative technique is challenging and has several limitations that compromise its use in clinical routine [5]: (1) The black blood impulse can result in an imperfect nulling of the left ventricular blood pool signal making it difficult to differentiate subendocardial edema from low flow left ventricular blood; (2) Arrhythmia and the use of phased array coils can cause signal intensity inhomogeneities that may obscure myocardial edema; (3) In cases of diffuse global myocardial edema, when no signal from healthy myocardium is present, correct image interpretation may be hampered

  • Phantom experiments The phantom study demonstrated the need for well defined sequence settings for T2 mapping with GraSE to obtain accurate measurements

Read more

Summary

Introduction

Quantitative Cardiovascular Magnetic Resonance (CMR) techniques have gained high interest in CMR research. Several techniques and sequences for myocardial T2 mapping have been described [6,7,8,9] with several studies defining normal values for healthy human myocardium [7,9,10,11,12,13]. Some of these methods are either time-consuming, are acquired in free breathing, or require specialized software for data acquisition and/or post-processing, all of which are factors that limits their use in clinical routine. Measurement of an absolute tissue property for the quantification of myocardial edema is expected to be beneficial for establishing the diagnosis but can improve monitoring and help in guiding therapy, if well defined T2 mapping sequences are available, that allow for good quality, reliable and rapid data acquisition

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call