Abstract
We show that a connected gradient Ricci soliton ( $$M,g,f,\lambda $$ ) with constant scalar curvature and admitting a non-homothetic conformal vector field V leaving the potential vector field invariant, is Einstein and the potential function f is constant. For locally conformally flat case and non-homothetic V we show without constant scalar curvature assumption, that f is constant and g has constant curvature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.