Abstract

Let $(M^n,g)$ be an $n$-dimensional compact connected Riemannian manifold with smooth boundary. We show that the presence of a nontrivial conformal gradient vector field on $M$, with an appropriate control on the Ricci curvature makes $M$ to be isometric to a hemisphere of $\mathbb{S}^{n}$. We also prove that if an Einstein manifold admits nonzero conformal gradient vector field, then its scalar curvature is positive and it is isometric to a hemisphere of $\mathbb{S}^{n}$. Furthermore, we prove that if $ M $ admits a nontrivial conformal vector field and has constant scalar curvature, then the scalar curvature is positive. Finally, a suitable control on the energy of a conformal vector field implies that $M$ is isometric to a hemisphere $\mathbb{S}^n_+$.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.