Abstract
We describe a gradient elution reversed-phase high-performance liquid chromatographic approach for isolation of individual glycerophospholipid molecular species which greatly improves resolution and reduces run time compared to isocratic techniques. Separations were optimized and elution order and retention time data established by synthesizing 37 different homogeneous phospholipids comprising the major alkylacyl, diacyl and plasmalogen molecular species in samples derived from mammalian sources. Empirical equations which predict the elution order of individual species were derived. The method was validated with the use of complex mixtures of choline and ethanolamine glycerophospholipid species from isolated rabbit cardiomyocytes and porcine endothelial cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Chromatography B: Biomedical Sciences and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.