Abstract
We study the problem of training deep fully connected neural networks with Rectified Linear Unit (ReLU) activation function and cross entropy loss function for binary classification using gradient descent. We show that with proper random weight initialization, gradient descent can find the global minima of the training loss for an over-parameterized deep ReLU network, under certain assumption on the training data. The key idea of our proof is that Gaussian random initialization followed by gradient descent produces a sequence of iterates that stay inside a small perturbation region centered at the initial weights, in which the training loss function of the deep ReLU networks enjoys nice local curvature properties that ensure the global convergence of gradient descent. At the core of our proof technique is (1) a milder assumption on the training data; (2) a sharp analysis of the trajectory length for gradient descent; and (3) a finer characterization of the size of the perturbation region. Compared with the concurrent work (Allen-Zhu et al. in A convergence theory for deep learning via over-parameterization, 2018a; Du et al. in Gradient descent finds global minima of deep neural networks, 2018a) along this line, our result relies on milder over-parameterization condition on the neural network width, and enjoys faster global convergence rate of gradient descent for training deep neural networks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.