Abstract

Dynamic strain localisation in saturated and partially saturated porous media is investigated with a one-dimensional model in this paper. The porous medium is treated as a multiphase continuum, with the pores filled by water and air, this last one at atmospheric pressure. A gradient-dependent plasticity model is introduced to describe the plastic behaviour of the solid skeleton. Material instability due to the softening behaviour of the solid skeleton and the well-posedness of the initial value problem are studied. The advantages of the enhanced model are that the governing equations remain hyperbolic even in the softening regime and convergent solutions with mesh refinements are obtained. Moreover, the influence of permeability in the seepage process for the development of the localised zones is discussed. We find that the permeability plays an important part in the compressive wave propagation, but not in the shear wave cases. For numerical implementation of the present method, a parametric variational principle is introduced by which the original problem is reduced to a standard linear complementary problem in mathematical programming. The results of a one dimensional example are given to illustrate the efficiency of the techniques presented here.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.