Abstract

Abstract Viscoplasticity is introduced as a procedure to regularize the elasto-plastic solid, especially for those situations in which the underlying inviscid material exhibits instabilities which preclude further analysis of initial-value problems. The procedure is general, and therefore has the advantage of allowing the regularization of any inviscid elastic-plastic material. Rate-dependency is shown to naturally introduce a length-scale into the dynamical initial-value problem. Furthermore, the width of the localized zones in which high strain gradients prevail and strain accumulations take place, is shown to be proportional to the characteristic length c η, which is the distance the elastic wave travels in the characteristic time η. Viscosity can thus be viewed either as a regularization parameter (computational point of view), or as a substructural/micromechanical parameter to be determined from observed shear-band widths (physical point of view). Finally, from a computational point of view, the proposed approach is shown to have striking advantages: (1) the wave speeds always remain real (even in the softening regime) and are set by the elastic moduli; (2) the elasto-(visco-)plastic constitutive equations are amenable to unconditionally stable integration; (3) the resulting well-posedness of the dynamical initial-value problem guarantees stable and convergent solutions with mesh refinements. The initial-value problems reported in this first part are essentially one-dimensional. They are used because they offer the simplest possible context to illustrate both the physical and computational significance of the proposed viscoplastic regularization procedure. The methods used in multi-dimensional analysis and examples will be reported in Part 2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.