Abstract
We consider a quantum system with a time-independent Hamiltonian parametrized by a set of unknown parameters $\alpha$. The system is prepared in a general quantum state by an evolution operator that depends on a set of unknown parameters $P$. After the preparation, the system evolves in time, and it is characterized by a time-dependent observable ${\cal O}(t)$. We show that it is possible to obtain closed-form expressions for the gradients of the distance between ${\cal O}(t)$ and a calculated observable with respect to $\alpha$, $P$ and all elements of the system density matrix, whether for pure or mixed states. These gradients can be used in projected gradient descent to infer $\alpha$, $P$ and the relevant density matrix from dynamical observables. We combine this approach with random phase wave function approximation to obtain closed-form expressions for gradients that can be used to infer population distributions from averaged time-dependent observables in problems with a large number of quantum states participating in dynamics. The approach is illustrated by determining the temperature of molecular gas (initially, in thermal equilibrium at room temperature) from the laser-induced time-dependent molecular alignment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.