Abstract

Computer-aided classification of benign and malignant masses on mammograms is attempted in this study by computing gradient-based and texture-based features. Features computed based on gray-level co-occurrence matrices (GCMs) are used to evaluate the effectiveness of textural information possessed by mass regions in comparison with the textural information present in mass margins. A method involving polygonal modeling of boundaries is proposed for the extraction of a ribbon of pixels across mass margins. Two gradient-based features are developed to estimate the sharpness of mass boundaries in the ribbons of pixels extracted from their margins. A total of 54 images (28 benign and 26 malignant) containing 39 images from the Mammographic Image Analysis Society (MIAS) database and 15 images from a local database are analyzed. The best benign versus malignant classification of 82.1%, with an area (Az) of 0.85 under the receiver operating characteristics (ROC) curve, was obtained with the images from the MIAS database by using GCM-based texture features computed from mass margins. The classification method used is based on posterior probabilities computed from Mahalanobis distances. The corresponding accuracy using jack-knife classification was observed to be 74.4%, with Az = 0.67. Gradient-based features achieved Az = 0.6 on the MIAS database and Az = 0.76 on the combined database. The corresponding values obtained using jack-knife classification were observed to be 0.52 and 0.73 for the MIAS and combined databases, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call