Abstract

The mismatch between the thermal expansion coefficients of ceramics and metals and the differential stresses it causes at the interface create problems in metal to ceramic joining. Research has been con-ducted to solve this problem in thermal barrier coating technology. Previous studies have considered met-al-ceramic multilayers or graded-coatings, which include a metallic bond coat. In this study, a graded plasma-sprayed metal-ceramic coating is developed using the deposition of premixed metal and ceramic powders without the conventional metallic bond coat. Influences of thickness variations, number, and composition of the layers are investigated. Coatings are prepared by atmospheric plasma-spraying on In-conel 718 superalloy substrates. Ni-Cr-Al and ZrO2 -8 % Y2O3 powders are used for plasma spraying. Ad-hesive and cohesive strength of the coatings are determined. The concentration profile of the elements is determined by x-ray energy-dispersive analysis. The microstructure and morphology of the coatings are investigated by optical and scanning electron microscopy (SEM). Results show that the mixed metal-ce-ramic coating obtained with the deposition of premixed powders is homogeneous. The morphology and microstructure of the coatings are considered satisfactory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.