Abstract

Conversion of graded responsiveness of lobster muscle fibers to all-or-none activity by alkali-earth and tetraethylammonium (TEA) ions appears to be due to a combination of effects. The membrane is hyperpolarized, its resistance is increased, and its sensitivity to external K(+) is diminished, all effects which indicate diminished K(+) conductance. While the spikes are prolonged, the conductance is higher throughout the response than it is in the resting membrane. Repetitive activity becomes prominent. These effects indicate maintained high conductance for an ion which causes depolarization. This is normally Na(+), since its presence in low concentrations potentiates the effects of Ba(++), but the alkali-earth ions and TEA can also carry inward charge. Ba(++), Sr(++), and TEA appear to be more effective than is Ca(++) in its normal role, which is probably to depress K(+) conductance and Na inactivation. Thus, conversion of graded to all-or-none responsiveness appears to occur because of the relative increase of depolarizing inward ion flux and decrease of repolarizing outward flux.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call