Abstract

Long-duration Ca action potentials induced in crustacean muscle fibers after prolonged exposure to quaternary ammonium ions are accompanied by attenuated tensions with unique time courses. The tensions have three phases. The initial phase, correlated with the upstroke of the spike, is a rapid increase in tension followed by relaxation to or near to resting level (on-tension). In the second phase, tension rises slowly as the spike plateau declines. The final phase is another rapid increase and decay in tension that is correlated with termination of the action potential (off-tension). To observe these tensions, fibers must be exposed to 50-100 mM tetrabutylammonium ion for about 1 hr or to lower concentrations for longer periods (e.g., 5 mM for 20-30 hr). To obtain a similar response in fibers treated with tetraethylammonium ion, higher concentrations or longer soaking periods, or both, are required. Because neither caffeine-induced tensions in intact fibers nor contractile protein and sarcoplasmic reticulum function in skinned fibers were modified by quaternary ammonium ions, their site of action appears to be limited to surface or transverse tubular system membranes, or both. The unique tensions can be explained by considering the mode by which quaternary ammonium ions block K channels in conjunction with a scheme in which activation of K channels within the transverse tubular system controls the driving force for influx of Ca ions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call