Abstract

DNA and RNA can fold into a variety of alternative conformations. In recent years, a particular nucleic acid structure was discussed to play a role in malignant transformation and cancer development. This structure is called a G-quadruplex (G4). G4 structure formation can drive genome instability by creating mutations, deletions and stimulating recombination events. The importance of G4 structures in the characterization of malignant cells was currently demonstrated in breast cancer samples. In this analysis a correlation between G4 structure formation and an increased intratumor heterogeneity was identified. This suggests that G4 structures might allow breast cancer stratification and supports the identification of new personalized treatment options. Because of the stability of G4 structures and their presence within most human oncogenic promoters and at telomeres, G4 structures are currently tested as a therapeutic target to downregulate transcription or to block telomere elongation in cancer cells. To date, different chemical molecules (G4 ligands) have been developed that aim to target G4 structures. In this review we discuss and compare G4 function and relevance for therapeutic approaches and their impact on cancer development for three cancer entities, which differ significantly in their amount and type of mutations: pancreatic cancer, leukemia and malignant melanoma. G4 structures might present a promising new strategy to individually target tumor cells and could support personalized treatment approaches in the future.

Highlights

  • Cancer is the world’s second most leading cause of death [1]

  • In this review we presented and discussed the relevance of G4 structure formation and stabilization as a therapeutical approach to treat cancer cells based on the current literature

  • We summarized the current research results that are linked to changes in G4 levels in melanoma, pancreatic cancer and leukemia cells

Read more

Summary

Introduction

Cancer is the world’s second most leading cause of death [1]. Therapeutic strategies for many cancers have greatly advanced during the last years, still about 9.6 million people died of cancer in 2018 [2]. This highlights the need to strengthen the research on causes of cancer development and to improve diagnostic and antitumor treatment options. Different promising therapeutic strategies have been identified in the last decades. Immunotherapy and targeted therapies have revolutionized anti-tumor therapy [3]. The identification of genetic and epigenetic abnormalities as well as tumor-growth

Objectives
Findings
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call