Abstract

This article presents a GPU-based single-unit deadlock detection methodology and its algorithm, GPU-OSDDA. Our GPU-based design utilizes parallel hardware of GPU to perform computations and thus is able to overcome the major limitation of prior hardware-based approaches by having the capability of handling thousands of processes and resources, whilst achieving real-world run-times. By utilizing a bit-vector technique for storing algorithm matrices and designing novel, efficient algorithmic methods, we not only reduce memory usage dramatically but also achieve two orders of magnitude speedup over CPU equivalents. Additionally, GPU-OSDDA acts as an interactive service to the CPU, because all of the aforementioned computations and matrix management techniques take place on the GPU, requiring minimal interaction with the CPU. GPU-OSDDA is implemented on three GPU cards: Tesla C2050, Tesla K20c, and Titan X. Our design shows overall speedups of 6-595X over CPU equivalents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.