Abstract

This paper describes different methods to improve reliability of attitude estimation using low cost GPS receivers. Previous work has shown that low cost receiver attitude determination systems are more susceptible to measurement errors, such as multipath, phase center offsets, and cycle slips. In some cases, these error sources lead to severely erroneous attitude estimates and/or to a lower availability. The reliability control in the attitude determination becomes imperative to users, as most attitude applications require a high level of reliability. The three methods tested herein to improve reliability are the use of a high data rate, fixed angular constraints, and a quality control algorithm implemented with a Kalman filter. The use of high rate measurements improves error detection as well as ambiguity fixing time. Fixed angular constraints in a multi-antenna attitude system is effective to reject incorrect solutions during the ambiguity resolution phase of the process. Utilizing a Kalman filter with a high data rate, e.g. 10 Hz, not only increases reliability through an increase of information, but also can improve accuracy and availability. The simultaneous utilization of the above methods significantly improves reliability, as demonstrated through a series of hardware simulations and field tests. The low cost receiver type selected is the CMC Allstar receiver equipped with a commercially available low cost antenna. Finally, the use of statistically reliability measures, namely internal and external reliability measures, shows the inherent limitations of a low cost system and the need to either use better antennas and/or external aiding in the form of low cost sensors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call