Abstract

GPR34 is a G protein-coupled receptor belonging to the P2Y family. Here, we attempted to resolve conflicting reports about whether it is a functional lysophosphatidylserine (LysoPS) receptor. In HEK293 cells expressing human, mouse or rat GPR34 and Gα chimera between Gαq and Gαi1(Gq/i1), LysoPS quickly elevated intracellular Ca(2+) ion levels ([Ca(2+)](i)). LysoPS also stimulated alkaline phosphatase (AP)-tagged TGFα (AP-TGFα) release in GPR34-expressing HEK293 cells and induced the migration of CHO-K1 cells expressing GPR34. Other lysophospholipids did not induce these actions. Replacement of the serine residue of LysoPS abolished the reactivity of LysoPS with GPR34, indicating that GPR34 strictly recognizes the serine head group of LysoPS. Recombinant phosphatidylserine-specific phospholipase A(1) (PS-PLA(1)) that deacylates fatty acid at the sn-1 position of PS and produces 2-acyl-LysoPS, but not catalytically inactive mutant PS-PLA(1), stimulated the release of AP-TGFα from GPR34-expressing cells. Consistent with the result, LysoPS was detected in the cells treated with wild-type PS-PLA(1) but not with the mutant PS-PLA(1). PS treated with PLA(1) was much more effective at stimulating AP-TGFα release than PS treated with PLA(2). In addition, migration-resistant 2-acyl-1-deoxy-LysoPS, a 2-acyl-LysoPS analogue, was much more potent than 1-acyl-2-deoxy-LysoPS. The present studies confirm that GPR34 is a cellular receptor for LysoPS, especially with a fatty acid at the sn-2 position.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call