Abstract

Alzheimer's disease (AD) is characterized by the extensive deposition of amyloid-β peptide (Aβ) in the brain. Brain Aβ level is regulated by a balance between Aβ production and clearance. The clearance rate of Aβ is decreased in the brains of sporadic AD patients, indicating that the dysregulation of Aβ clearance mechanisms affects the pathologic process of AD. Astrocytes are among the most abundant cells in the brain and are implicated in the clearance of brain Aβ via their regulation of the blood-brain barrier, glymphatic system, and proteolytic degradation. The cellular morphology and activity of astrocytes are modulated by several molecules, including ω3 polyunsaturated fatty acids, such as docosahexaenoic acid, which is one of the most abundant lipids in the brain, via the G protein-coupled receptor GPR120/FFAR4. In this study, we analyzed the role of GPR120 signaling in the Aβ-degrading activity of astrocytes. Treatment with the selective antagonist upregulated the matrix metalloproteinase (MMP) inhibitor-sensitive Aβ-degrading activity in primary astrocytes. Moreover, the inhibition of GPR120 signaling increased the levels of Mmp2 and Mmp14 mRNAs, and decreased the expression levels of tissue inhibitor of metalloproteinases 3 (Timp3) and Timp4, suggesting that GPR120 negatively regulates the astrocyte-derived MMP network. Finally, the intracerebral injection of GPR120-specific antagonist substantially decreased the levels of TBS-soluble Aβ in male AD model mice, and this effect was canceled by the coinjection of an MMP inhibitor. These data indicate that astrocytic GPR120 signaling negatively regulates the Aβ-degrading activity of MMPs.SIGNIFICANCE STATEMENT The level of amyloid β (Aβ) in the brain is a crucial determinant of the development of Alzheimer's disease. Here we found that astrocytes, which are the most abundant cell type in the CNS, harbor degrading activity against Aβ, which is regulated by GPR120 signaling. GPR120 is involved in the inflammatory response and obesity in peripheral organs. However, the pathophysiological role of GPR120 in Alzheimer's disease remains unknown. We found that selective inhibition of GPR120 signaling in astrocytes increased the Aβ-degrading activity of matrix metalloproteases. Our results suggest that GPR120 in astrocytes is a novel therapeutic target for the development of anti-Aβ therapeutics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call