Abstract

In this paper, we develop a GPGPU acceleration methodology for the Binary-Collision-Approximation based Monte Carlo ion implantation simulation (MCII). Our proposed method avoids the branch-divergence issue which comes from the difference of material crystallinity for the structure with multiple materials. We also introduce an efficient scheme to mitigate the side effect for damage accumulation due to massive parallelization of simulation. Our demonstration of high energy implantation into CIS structure shows almost 40x speed-up compared to CPU implementation of MCII. We conclude that GPU-MCII is effective for acceleration of Monte Carlo simulations with high energy implantation e.g. deep photodiode or well isolation formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.