Abstract

We present an iterative algorithm for calculating approximate greatest common divisor (GCD) of univariate polynomials with the real or the complex coefficients. For a given pair of polynomials and a degree, our algorithm finds a pair of polynomials which has a GCD of the given degree and whose coefficients are perturbed from those in the original inputs, making the perturbations as small as possible, along with the GCD. The problem of approximate GCD is transferred to a constrained minimization problem, then solved with the so-called modified Newton method, which is a generalization of the gradient-projection method, by searching the solution iteratively. We demonstrate that, in some test cases, our algorithm calculates approximate GCD with perturbations as small as those calculated by a method based on the structured total least norm (STLN) method and the UVGCD method, while our method runs significantly faster than theirs by approximately up to 30 or 10 times, respectively, compared with their implementation. We also show that our algorithm properly handles some ill-conditioned polynomials which have a GCD with small or large leading coefficient.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.