Abstract
We consider the distributed tracking problem in networks of heterogeneous agents with limited sensing and communication ranges. A gossip-based distributed Kalman filter (GDKF) is proposed, where an average consensus on predictions of different agents is achieved by randomized, asynchronous gossip algorithms in a totally distributed way. The error dynamics of GDKF is proved to be a globally asymptotically stable system and the error reduction rate is provided. To demonstrate the improved performance of GDKF, we compare it with an alternative distributed estimation strategy termed Kalman-Consensus Filter (KCF) by implementing them to track a maneuvering target collectively with heterogeneous agents.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.