Abstract

India is ranked 120th among 122 countries globally in WaterAid’s water quality index. Regular water quality monitoring is essential to determine which inland water bodies are experiencing depreciating water quality. Long-term trends have been obtained using satellite remote sensing, necessitating multiple image analysis. The computational burden of processing numerous satellite images can be reduced using Google Earth Engine’s (GEE) cloud computing capabilities. Thorough research was conducted to determine the global spatio-temporal and biochemical factors impacting surface water quality (WQ). The public availability of geospatial datasets and free access to cloud-based geo-computing platforms such as GEE are widely used for spatio-temporal mapping, global surface water monitoring, water quality parametric variation, and real-time forecasting. Many researchers have recently focused on improving data mining and machine learning algorithms to accurately deal with image classification and predictive problems for crop identification and monitoring. In the present study, we propose to define band spectral ratios, spectral band equations, and empirical models for water quality parameters. A few neural network models will be used to (i) query and pre-process satellite earth observations that coincide with the study area, (ii) extract the spectra, and (iii) use spectral band wavelength charts, time-series charts, spatial-distribution maps, and the development of an online dashboard application to visualize the results graphically upon using integrated Landsat (8,9), Sentinel-2A/B and PlanetScope satellite data for the pre-monsoon and post-monsoon seasons in 2023 in the pan-India region. MODIS-TERRA provides LST spatial-temporal monitoring. In this, we have assessed and compared the performance of CART, SVM, and RF ML algorithms. We found that RF outperforms CART and SVM algorithms in the GEE platform with PlanetScope data (80.71% overall accuracy (OA) with Kappa 0.89) and also with the integration of PlanetScope and Sentinel-2A/B data (OA = 85.53%, Kappa 0.91). But CART outperforms RF and SVM algorithms with Sentiel-2A/B data (OA = 81.59%, Kappa 0.85). The SAM technique, spectral feature fitting, continuum band removal, and other band-spectral ratio techniques are employed for quantitative hyperspectral data analysis. Specifically, the performance metrics of XGBoost and SGD for both Chl-a (R^2 = 0.818) and Turbidity (R^2 = 0.815) models exhibited robust accuracy. We have also developed a Google API-based JavaScript code that can be tested under complex coastal shores, challenging inundation and variable climatic conditions. Our method provides the end-to-end cloud computing workflow shown in this research, considering cost and computational efficiency for timely information delivery. Keywords: Classification and Regression Trees (CART), Chlorophyll-a (conc), Color dissolved organic matter (CDOM), Composite water management index (CWMI), Environmental Mapping and Analysis Program (EnMAP), Land Surface Temperature (LST), Machine Learning (ML), Random Forest (RF), Spectral Angle Mapper (SAM), Stochastic Gradient Descent (SGD), Support Vector Machine (SVM), Total Suspended Solids (TSS), Water Quality (WQ), XGBoost (Extreme Gradient Boosting).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call