Abstract

In this study, we demonstrate that the Google Earth Engine (GEE) dataset of Sentinel-3 Ocean and Land Color Instrument (OLCI) level-1 deviates from the original Copernicus Open Access Data Hub Service (DHUS) data by 10–20 W m−2 sr−1μμm−1 per pixel per band. We compared GEE and DHUS single pixel time series for the period from April 2016 to September 2020 and identified two sources of this discrepancy: the ground pixel position and reprojection. The ground pixel position of OLCI product can be determined in two ways: from geo-coordinates (DHUS) or from tie-point coordinates (GEE). We recommend using geo-coordinates for pixel extraction from the original data. When the Sentinel Application Platform (SNAP) Pixel Extraction Tool is used, an additional distance check has to be conducted to exclude pixels that lay further than 212 m from the point of interest. Even geo-coordinates-based pixel extraction requires the homogeneity of the target area at a 700 m diameter (49 ha) footprint (double of the pixel resolution). The GEE OLCI dataset can be safely used if the homogeneity assumption holds at 2700 m diameter (9-by-9 OLCI pixels) or if the uncertainty in the radiance of 10% is not critical for the application. Further analysis showed that the scaling factors reported in the GEE dataset description must not be used. Finally, observation geometry and meteorological data are not present in the GEE OLCI dataset, but they are crucial for most applications. Therefore, we propose to calculate angles and extraterrestrial solar fluxes and to use an alternative data source—the Copernicus Atmosphere Monitoring Service (CAMS) dataset—for meteodata.

Highlights

  • We demonstrate the challenges of an Ocean and Land Color Instrument (OLCI) per pixel time series extraction (1), warn potential Google Earth Engine (GEE) OLCI dataset users about the hidden data modifications revealed during the comparison of per pixel time series between GEE and the official

  • We quantified the uncertainty in the GEE OLCI dataset and proposed a method to augment the dataset with meteorological and geometric data distributed with the original

  • We expect this to be useful for scientists working with per-pixel time-series, the acquisition of which is complicated by the fact that half of the products are offline in the long-term archive (LTA), and no more than 20 products per day can be requested

Read more

Summary

Objectives

The goal of this study was to compare all available images; we did not use this flag

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.