Abstract
The Sentinel Application Platform (SNAP) architecture facilitates Earth Observation data processing. In this work, we present results from a new Snow Processor for SNAP. We also describe physical principles behind the developed snow property retrieval technique based on the analysis of Ocean and Land Colour Instrument (OLCI) onboard Sentinel-3A/B measurements over clean and polluted snow fields. Using OLCI spectral reflectance measurements in the range 400–1020 nm, we derived important snow properties such as spectral and broadband albedo, snow specific surface area, snow extent and grain size on a spatial grid of 300 m. The algorithm also incorporated cloud screening and atmospheric correction procedures over snow surfaces. We present validation results using ground measurements from Antarctica, the Greenland ice sheet and the French Alps. We find the spectral albedo retrieved with accuracy of better than 3% on average, making our retrievals sufficient for a variety of applications. Broadband albedo is retrieved with the average accuracy of about 5% over snow. Therefore, the uncertainties of satellite retrievals are close to experimental errors of ground measurements. The retrieved surface grain size shows good agreement with ground observations. Snow specific surface area observations are also consistent with our OLCI retrievals. We present snow albedo and grain size mapping over the inland ice sheet of Greenland for areas including dry snow, melted/melting snow and impurity rich bare ice. The algorithm can be applied to OLCI Sentinel-3 measurements providing an opportunity for creation of long-term snow property records essential for climate monitoring and data assimilation studies—especially in the Arctic region, where we face rapid environmental changes including reduction of snow/ice extent and, therefore, planetary albedo.
Highlights
Snow is an essential component of the cryosphere, and plays an important role in the hydrological cycle and in climate change studies [1]
We describe physical principles behind the developed snow property retrieval technique based on the analysis of Ocean and Land Colour Instrument (OLCI) onboard Sentinel-3A/B measurements over clean and polluted snow fields
In the 400 nm to 1020 nm spectral range spanned by the OLCI instrument, one can ignore the ice crystal size dependence of the value of the average cosine of scattering angle g
Summary
Snow is an essential component of the cryosphere, and plays an important role in the hydrological cycle and in climate change studies [1]. It has been found that the global snow cover and snow albedo are decreasing with time [1]. If this trend persists, this may lead to important climatic consequences in the future. Just 1% reduction in snow albedo may lead to a diurnal radiative forcing of 4 W m−2 locally, similar to that of carbon dioxide doubling [2]. This leads to a substantial climate warming as discussed in [1]. The retrieval of snow optical properties is currently done using various space-borne instrumentation including optical sensors such as MODerate-resolution Imaging Spectroradiometer (MODIS) [5,6,7,8,9,10,11,12], GLobal Imager (GLI) [13,14], MEdium Resolution Imaging Spectrometer(MERIS) [15], Visible Infrared Imaging Radiometer Suite (VIIRS) [16], MultiSpectral Imager (MSI)/Sentinel-2 (S-2) [17], etc
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.