Abstract
Consider the nonparametric location-scale regression model Y = m ( X ) + σ ( X ) ε , where the error ε is independent of the covariate X , and m and σ are smooth but unknown functions. The pair ( X , Y ) is allowed to be subject to selection bias. We construct tests for the hypothesis that m ( · ) belongs to some parametric family of regression functions. The proposed tests compare the nonparametric maximum likelihood estimator (NPMLE) based on the residuals obtained under the assumed parametric model, with the NPMLE based on the residuals obtained without using the parametric model assumption. The asymptotic distribution of the test statistics is obtained. A bootstrap procedure is proposed to approximate the critical values of the tests. Finally, the finite sample performance of the proposed tests is studied in a simulation study, and the developed tests are applied on environmental data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.