Abstract
Latent block models are used for probabilistic biclustering, which is shown to be an effective method for analyzing various relational data sets. However, there has been no statistical test method for determining the row and column cluster numbers of latent block models. Recent studies have constructed statistical-test-based methods for stochastic block models, which assume that the observed matrix is a square symmetric matrix and that the cluster assignments are the same for rows and columns. In this study, we developed a new goodness-of-fit test for latent block models to test whether an observed data matrix fits a given set of row and column cluster numbers, or it consists of more clusters in at least one direction of the row and the column. To construct the test method, we used a result from the random matrix theory for a sample covariance matrix. We experimentally demonstrated the effectiveness of the proposed method by showing the asymptotic behavior of the test statistic and measuring the test accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.