Abstract
We introduce a Bayesian extension of the latent block model for model-based block clustering of data matrices. Our approach considers a block model where block parameters may be integrated out. The result is a posterior defined over the number of clusters in rows and columns and cluster memberships. The number of row and column clusters need not be known in advance as these are sampled along with cluster memberhips using Markov chain Monte Carlo. This differs from existing work on latent block models, where the number of clusters is assumed known or is chosen using some information criteria. We analyze both simulated and real data to validate the technique.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.