Abstract
ABSTRACTIn this article, we develop a formal goodness-of-fit testing procedure for one-shot device testing data, in which each observation in the sample is either left censored or right censored. Such data are also called current status data. We provide an algorithm for calculating the nonparametric maximum likelihood estimate (NPMLE) of the unknown lifetime distribution based on such data. Then, we consider four different test statistics that can be used for testing the goodness-of-fit of accelerated failure time (AFT) model by the use of samples of residuals: a chi-square-type statistic based on the difference between the empirical and expected numbers of failures at each inspection time; two other statistics based on the difference between the NPMLE of the lifetime distribution obtained from one-shot device testing data and the distribution specified under the null hypothesis; as a final statistic, we use White's idea of comparing two estimators of the Fisher Information (FI) to propose a test statistic. We then compare these tests in terms of power, and draw some conclusions. Finally, we present an example to illustrate the proposed tests.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have