Abstract
Integrating Artificial Intelligence (AI) into mobile and wearables offers numerous benefits at individual, societal, and environmental levels. Yet, it also spotlights concerns over emerging risks. Traditional assessments of risks and benefits have been sporadic, and often require costly expert analysis. We developed a semi-automatic method that leverages Large Language Models (LLMs) to identify AI uses in mobile and wearables, classify their risks based on the EU AI Act, and determine their benefits that align with globally recognized long-term sustainable development goals; a manual validation of our method by two experts in mobile and wearable technologies, a legal and compliance expert, and a cohort of nine individuals with legal backgrounds who were recruited from Prolific, confirmed its accuracy to be over 85%. We uncovered that specific applications of mobile computing hold significant potential in improving well-being, safety, and social equality. However, these promising uses are linked to risks involving sensitive data, vulnerable groups, and automated decision-making. To avoid rejecting these risky yet impactful mobile and wearable uses, we propose a risk assessment checklist for the Mobile HCI community.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the ACM on Human-Computer Interaction
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.