Abstract
Vertebrate ancient long (VAL)-opsin is a green-sensitive photoreceptor that shows high sequence similarity to vertebrate ancient opsin, which is considered to play a role in sexual maturation via gonadotropin-releasing hormone (GnRH); however, the role of VAL-opsin in vertebrate sexual maturity remains unclear. Therefore, we investigated the possible role of VAL-opsin in reproduction in the goldfish Carassius auratus under a state of GnRH inhibition. Goldfish were injected with recombinant VAL-opsin protein (0.5μg/g body mass) and/or the GnRH antagonist cetrorelix (0.5μg/fish), and changes in the mRNA expression levels of genes associated with goldfish reproduction were measured by quantitative polymerase chain reaction, including those involved in the hypothalamus-pituitary-gonad (HPG) axis, VAL-opsin, GnRH, the gonadotropins (GTHs) luteinizing hormone and follicle-stimulating hormone, and estrogen receptor (ER). Moreover, the fish were irradiated with a green light-emitting diode (520nm) to observe the synergistic effect on the HPG axis with VAL-opsin. Green LED exposure significantly and slightly increased the VAL-opsin and GnRH levels, respectively; however, these effects were blocked in groups injected with cetrorelix at all time points. Cetrorelix significantly decreased the mRNA levels of GTHs and ER, whereas these hormones recovered by co-treatment with VAL-opsin. These results indicate that green LED is an effective light source to promote the expression of sex hormones in fish. Moreover, VAL-opsin not only affects activity of the HPG axis but also appears to act on the pituitary gland directly to stimulate a new sexual maturation pathway that promotes the secretion of GTHs independent of GnRH.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have