Abstract

Sustained exposure of gonadotropes to GnRH causes a pronounced desensitization of gonadotropin release, but the mechanisms involved are poorly understood. It is known that desensitization is associated with decreased GnRH receptor and Gq/11 levels in alphaT3-1 cells, but it is not known whether downstream signaling is impaired. We have shown previously that chronic stimulation of signaling via expression of an active form of Galphaq causes GnRH resistance in LbetaT2 cells. In this study we investigated whether chronic GnRH treatment could down-regulate protein kinase C (PKC), cAMP, or Ca2+-dependent signaling in LbetaT2 cells. We found that chronic GnRH treatment desensitizes cells to acute GnRH stimulation not only by reducing GnRH receptor and Gq/11 expression but also by down-regulating PKC, cAMP, and calcium-dependent signaling. Desensitization was observed for activation of ERK and p38 MAPK and induction of c-fos and LHbeta protein expression. Activation of individual signaling pathways was able to partially mimic the desensitizing effect of GnRH on ERK, p38 MAPK, c-fos, and LHbeta but not on Gq/11. Chronic stimulation with phorbol esters reduced GnRH receptor expression to the same extent as chronic GnRH. Sustained GnRH also desensitized PKC signaling by down-regulating the delta, epsilon, and theta isoforms of PKC. We further show that chronic GnRH treatment causes heterologous desensitization of other Gq-coupled receptors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.