Abstract

Rapid engagement of the extracellular signal-regulated kinase (ERK) cascade via the Gq/11-coupled GnRH receptor (GnRHR) is mediated by transactivation of the epidermal growth factor receptor (EGFR). Here we show that the cross-talk between GnRHR and EGFR in gonadotropic cells is accomplished via gelatinases A and B (matrix metalloproteinases (MMPs) 2 and 9), identifying gelatinases as the first distinct members of the MMP family mediating EGFR transactivation by G protein-coupled receptors. Using a specific MMP2 and MMP9 inhibitor, Ro28-2653, GnRH-dependent EGFR transactivation was abrogated. Proving the specificity of the effect, transient transfection of alphaT3-1 cells with ribozymes directed against MMP2 or MMP9 specifically blocked EGFR tyrosine phosphorylation in response to GnRH stimulation. GnRH challenge of alphaT3-1 cells furthered the release of active MMP2 and MMP9 and increased their gelatinolytic activities within 5 min. Rapid release of activated MMP2 or MMP9 was inhibited by ribozyme-targeted down-regulation of MT1-MMP or MMP2, respectively. We found that GnRH-induced Src, Ras, and ERK activation were also gelatinase-dependent. Thus, gelatinase-induced EGFR transactivation was required to engage the extracellular-signal regulated kinase cascade. Activation of c-Jun N-terminal kinase and p38 MAPK by GnRH was unaffected by EGFR or gelatinase inhibition that, however, suppressed GnRH induction of c-Jun and c-Fos. Our findings suggest a novel role for gelatinases in the endocrine regulation of pituitary gonadotropes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.