Abstract

Unlike gonadotropin-releasing hormone (GnRH) analogues characterized by amino acid replacement in decapeptide primary structure, Cu-GnRH molecule preserves the native sequence but contains a Cu2+ ion stably bound to the nitrogen atoms including that of the imidazole ring of His2. Cu-GnRH can operate via cAMP/PKA signalling in anterior pituitary cells, suggesting that it may affect selected gonadotropic network gene transcription in vivo.We analysed pituitary mRNA expression of Egr-1, Nr5a1, and Lhb based on their role in luteinizing hormone (LH) synthesis; and Nos1, Adcyap1, and Prkaca due to their dependence on cAMP/PKA activity. In two independent experiments, ovariectomized rats received intracerebroventricular pulsatile (one pulse/h or two pulses/h over 5 h) microinjections of 2 nM Cu-GnRH; 2 nM antide (GnRH antagonist) + 2 nM Cu-GnRH; 100 nM PACAP6–38 (PACAP receptor antagonist) + 2 nM Cu-GnRH. Relative expression of selected mRNAs was determined by qRT-PCR. LH serum concentration was examined according to RIA.All examined genes responded to Cu-GnRH stimulation with increased transcriptional activity in a manner dependent on pulse frequency pattern. Increased expression of Nr5a1, Lhb, Nos1, Adcyap1, and Prkaca mRNA was observed solely in rats receiving the complex with frequency of two pulses/h over 5 h. Egr-1 transcription was up-regulated for both applied Cu-GnRH pulsatile patterns. The stimulatory effect of Cu-GnRH on gene transcription was dependent on both GnRH receptor and PAC-1 activation.In conclusion, obtained results indicate that Cu-GnRH complex is a GnRH analogue able to induce both IP3/PKC and cAMP/PKA-dependent gonadotrope network gene transcription in vivo.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.